Patterned Anchorage to the Apical Extracellular Matrix Defines Tissue Shape in the Developing Appendages of Drosophila

نویسندگان

  • Robert P. Ray
  • Alexis Matamoro-Vidal
  • Paulo S. Ribeiro
  • Nic Tapon
  • David Houle
  • Isaac Salazar-Ciudad
  • Barry J. Thompson
چکیده

How tissues acquire their characteristic shape is a fundamental unresolved question in biology. While genes have been characterized that control local mechanical forces to elongate epithelial tissues, genes controlling global forces in epithelia have yet to be identified. Here, we describe a genetic pathway that shapes appendages in Drosophila by defining the pattern of global tensile forces in the tissue. In the appendages, shape arises from tension generated by cell constriction and localized anchorage of the epithelium to the cuticle via the apical extracellular-matrix protein Dumpy (Dp). Altering Dp expression in the developing wing results in predictable changes in wing shape that can be simulated by a computational model that incorporates only tissue contraction and localized anchorage. Three other wing shape genes, narrow, tapered, and lanceolate, encode components of a pathway that modulates Dp distribution in the wing to refine the global force pattern and thus wing shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forces shaping the Drosophila wing

How genes encode the three-dimensional shape of tissues is a fascinating problem in biology. Pioneering genetic studies in the fruit fly Drosophila have identified key genes that control the generation of force patterns in the developing wing. Shortrange force patterns generated by planar polarised myosins can promote boundary formation and tissue elongation during the larval wing disc stage. L...

متن کامل

Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing

How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape cha...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering

The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...

متن کامل

Polarized and Non-Poarized Human Oviduct Epithelial Cell Ultrastructure in Vitro

Purpose: This study designed to examine polarized culture of epithelial cells from human ovidutc and their ultrastracture under polarizing condition. Materials and Methods: The human oviduct was obtained from patients having undergone total hysterectomy and epithelial cells were isolated using collagenase type I. The epithelial cells were either cultured on ECM (Extracellular matrix) Gel coate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2015